Combination therapy with anti-programmed cell death 1 antibody plus angiokinase inhibitor exerts synergistic antitumor effect against malignant mesothelioma via tumor microenvironment modulation
Lung Cancer 2023 June [Link]
Akio Tada, Toshiyuki Minami, Hidemi Kitai, Yoko Higashiguchi, Mayuko Tokuda, Tomoki Higashiyama, Yoshiki Negi, Daisuke Horio, Yasuhiro Nakajima, Taiichiro Otsuki, Koji Mikami, Ryo Takahashi, Akifumi Nakamura, Kazuhiro Kitajima, Masaki Ohmuraya, Kozo Kuribayashi, Takashi Kijima
Abstract
Malignant pleural mesothelioma (MPM) is an asbestos-related fatal malignant neoplasm. Although there has been no reliable chemotherapeutic regimen other than combination therapy of cisplatin and pemetrexed for two decades, combination of ipilimumab plus nivolumab brought about a better outcome in patients with MPM. Thus, cancer immunotherapy using immune checkpoint inhibitor (ICI) is expected to play a central role in the treatment of MPM. To maximize the antitumor effect of ICI, we evaluated whether nintedanib, an antiangiogenic agent, could augment the antitumor effect of anti-programmed cell death 1 (PD-1) antibody (Ab). Although nintedanib could not inhibit the proliferation of mesothelioma cells in vitro, it significantly suppressed the growth of mesothelioma allografts in mice. Moreover, combination therapy with anti-PD-1 Ab plus nintedanib reduced tumor burden more dramatically compared with nintedanib monotherapy via inducing remarkable necrosis in MPM allografts. Nintedanib did not promote the infiltration of CD8+ T cells within the tumor when used alone or in combination with anti-PD-1 Ab but it independently decreased the infiltration of tumor-associated macrophages (TAMs). Moreover, immunohistochemical analysis and ex vivo study using bone marrow-derived macrophages (BMDMs) showed that nintedanib could polarize TAMs from M2 to M1 phenotype. These results indicated that nintedanib had a potential to suppress protumor activity of TAMs both numerically and functionally. On the other hand, ex vivo study revealed that nintedanib upregulated the expression of PD-1 and PD-ligand 1 (PD-L1) in BMDMs and mesothelioma cells, respectively, and exhibited the impairment of phagocytic activity of BMDMs against mesothelioma cells. Co-administration of anti-PD-1 Ab may reactivate phagocytic activity of BMDMs by disrupting nintedanib-induced immunosuppressive signal via binding between PD-1 on BMDMs and PD-L1 on mesothelioma cells. Collectively, combination therapy of anti-PD-1 Ab plus nintedanib enhances the antitumor activity compared with respective monotherapy and can become a novel therapeutic option for patients with MPM.