Bcl-xL antisense oligonucleotide and cisplatin combination therapy extends survival in SCID mice with established mesothelioma xenografts

International Journal of Cancer. 2008 Mar 21 [Epub ahead of print] [Link]

Littlejohn JE, Cao X, Miller SD, Ozvaran MK, Jupiter D, Zhang L, Rodarte C, Smythe WR.

Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, TX.


Bcl-xL functions as a dominant regulator of apoptotic cell death and is implicated in chemotherapeutic resistance of malignant pleural mesothelioma (MPM). Mesothelioma cell lines demonstrate increasing levels of Bcl-xL as resistant clones are selected invitro. Moreover, upon introduction of antisense oligonucleotides specific to Bcl-xL mRNA, MPM cells are sensitized to chemotherapeutic agents. Here we describe the therapeutic effects of a novel combination therapy, Bcl-xL antisense oligonucleotide (ASO 15999) and cisplatin, on mesothelioma cell lines in vitro and invivo; in addition, efficacy of ASO 15999 in decreasing tumor load as well as its effect on survival in an animal model. Finally, we initiated preliminary toxicity studies involved with intraperitoneal (IP) injections of ASO 15999 into mice. This novel combination, with doses of cisplatin four times below established IC50 levels, significantly decreased viability of MPM cell lines after 48 hr. The growth of established mouse flank human tumor xenografts was reduced with intra-tumor administration of ASO 15999. Local spread and development of IP xenografts was reduced with treatments of ASO alone, and survival of mice afflicted with these xenografts was prolonged after administration of ASO alone and ASO 15999 + cisplatin combination therapy. These findings suggest that ASO 15999 sensitizes MPM cell lines to the toxic effects of cisplatin. ASO 15999 induced reduction of Bcl-xL is effective in slowing the progression of human mesothelioma cell lines both in vitro and in vivo. More notably, the combination of Bcl-xL ASO and cisplatin extends survival in an orthotopic tumor xenograft model.

Keywords: mesothelioma, Bcl-xL, antisense oligonucleotide, cisplatin, combination therapy