Possible reversibility between epithelioid and sarcomatoid types of mesothelioma is independent of ERC/mesothelin expression

Respiratory Research 2020 July 16 [Link]

Masataka Kojima, Kazunori Kajino, Shuji Momose, Nadila Wali, May Thinzar Hlaing, Bo Han, Liang Yue, Masaaki Abe, Tomoaki Fujii, Katsuhisa Ikeda, Okio Hino


Background: Mesothelioma is histologically divided into three subgroups: epithelioid, sarcomatoid, and biphasic types. The epithelioid or sarcomatoid type is morphologically defined by polygonal or spindle-like forms of cells, respectively. The biphasic type consists of both components. It is not yet understood how histological differentiation of mesothelioma is regulated. ERC/mesothelin is expressed in most cases of the epithelioid type, but not in the sarcomatoid type of mesothelioma. Consequently, its expression is well correlated to the histological subtype. We hypothesized that ERC/mesothelin expression influences the histological differentiation of mesothelioma, and tested this hypothesis.

Methods: We performed studies using the overexpression or knockdown of ERC/mesothelin in mesothelioma cells to examine its effect on cellular morphology, growth kinetics, or migration/invasion activity, in vitro. We then transplanted ERC/mesothelin-overexpressing and control cells into the intraperitoneal space of mice. We examined the effect of ERC/mesothelin overexpression on mouse survival and tumor phenotype.

Results: In vitro cell culture manipulations of ERC/mesothelin expression did not affect cellular morphology or proliferation, although its overexpression enhanced cellular adhesion and the migration/invasion activity of mesothelioma cells. The survival rate of mice following intraperitoneal transplantation of ERC/mesothelin-overexpressing mesothelioma cells was significantly lower than that of mice with control cells. The histological evaluation of the tumors, however, did not show any morphological difference between two groups, and our hypothesis was not validated. Unexpectedly, both groups (ERC/mesothelin-overexpressing and control) of mesothelioma cells that were morphologically monophasic and spindle-like in vitro differentiated into a biphasic type consisting of polygonal and spindle-like components in the transplanted tumor, irrespective of ERC/mesothelin expression.

Conclusions: These results suggested that the histological transition of mesothelioma between epithelioid and sarcomatoid types may be reversible and regulated not by ERC/mesothelin, but by other unknown mechanisms.