Concordance between CDKN2A homozygous deletion and MTAP immunohistochemical loss in fluoroedenite-induced pleural mesothelioma: An immunohistochemical and molecular study on a single-institution series

Pathology, Research, and Practice 2024 May 14 [Link]

Giuseppe Broggi, Michele Massimino, Maria Failla, Veronica Filetti, Venerando Rapisarda, Caterina Ledda, Claudia Lombardo, Carla Loreto, Paolo Vigneri, Rosario Caltabiano


Fluoroedenite-induced pleural mesothelioma (FE-induced-PM) is a rare and small subset of PM that shares with its asbestos-induced counterpart the same aggressive biological behavior and poor prognosis, but that differs from it from a pathogenetic point of view as it is associated with exposure to fluoroedenite, a carcinogenic agent that shows similarities with tremolite amphibolic asbestos fibers. Although it has been demonstrated that asbestos-induced PMs frequently harbor CDKN2A homozygous deletion and that the immunohistochemical loss of MTAP may represent a cheap and reliable surrogate marker for this molecular alteration, little is known about the molecular landscape and the reliability of MTAP immunohistochemistry in this peculiar subset of PM. The study herein presented investigated the prevalence of CDKN2A homozygous deletion and its concordance with MTAP immunohistochemical status on a cohort of 10 cases of FE-induced-PM from patients with environmental exposure to FE fibers, who were residents in the small town of Biancavilla (Sicily, Italy) or nearby areas. CDKN2A homozygous deletions were found in 3 out of 10 cases (30%) and all these cases showed concomitant cytoplasmic loss of MTAP with a concordance rate of 100%. Despite the relatively low number of cases included in our series, MTAP immunohistochemistry seemed to represent a reliable immunohistochemical surrogate marker of CDKNA homozygous deletion even in this subset of PMs.