Antigen spreading-induced CD8+T cells confer protection against the lethal challenge of wild-type malignant mesothelioma by eliminating myeloid-derived suppressor cells

Oncotarget 2015 September 28 [Epub ahead of print] [Link]

Yu Z, Tan Z, Lee BK, Tang J, Wu X, Cheung KW, Lo NT, Man K, Liu L, Chen Z.


A key focus in cancer immunotherapy is to investigate the mechanism of efficacious vaccine responses. Using HIV-1 GAG-p24 in a model PD1-based DNA vaccine, we recently reported that vaccine-elicited CD8+ T cells conferred complete prevention and therapeutic cure of AB1-GAG malignant mesothelioma in immunocompetent BALB/c mice. Here, we further investigated the efficacy and correlation of protection on the model vaccine-mediated antigen spreading against wild-type AB1 (WT-AB1) mesothelioma. We found that this vaccine was able to protect mice completely from three consecutive lethal challenges of AB1-GAG mesothelioma. Through antigen spreading these animals also developed tumor-specific cytotoxic CD8+ T cells, but neither CD4+ T cells nor antibodies, rejecting WT-AB1 mesothelioma. A majority of these protected mice (90%) were also completely protected against the lethal WT-AB1 challenge. Adoptive cell transfer experiments further demonstrated that antigen spreading-induced CD8+ T cells conferred efficacious therapeutic effects against established WT-AB1 mesothelioma and prevented the increase of exhausted PD-1+ and Tim-3+ CD8+ T cells. A significant inverse correlation was found between the frequency of functional PD1-Tim3- CD8+ T cells and that of MDSCs or tumor mass in vivo. Mechanistically, we found that WT-AB1 mesothelioma induced predominantly polymorphonuclear (PMN) MDSCs in vivo. In co-cultures with efficacious CD8+ T cells, a significant number of PMN-MDSCs underwent apoptosis in a dose-dependent way. Our findings indicate that efficacious CD8+ T cells capable of eliminating both tumor cells and MDSCs are likely necessary for fighting wild-type malignant mesothelioma.