Genomic characterization and detection of potential therapeutic targets for peritoneal mesothelioma in current practice
Clinical and Experimental Medicine 2024 April 20 [Link]
Job P van Kooten, Michelle V Dietz, Hendrikus Jan Dubbink, Cornelis Verhoef, Joachim G J V Aerts, Eva V E Madsen, Jan H von der Thüsen
Abstract
Peritoneal mesothelioma (PeM) is an aggressive tumor with limited treatment options. The current study aimed to evaluate the value of next generation sequencing (NGS) of PeM samples in current practice. Foundation Medicine F1CDx NGS was performed on 20 tumor samples. This platform assesses 360 commonly somatically mutated genes in solid tumors and provides a genomic signature. Based on the detected mutations, potentially effective targeted therapies were identified. NGS was successful in 19 cases. Tumor mutational burden (TMB) was low in 10 cases, and 11 cases were microsatellite stable. In the other cases, TMB and microsatellite status could not be determined. BRCA1 associated protein 1 (BAP1) mutations were found in 32% of cases, cyclin dependent kinase inhibitor 2A/B (CDKN2A/B) and neurofibromin 2 (NF2) mutations in 16%, and ataxia-telangiectasia mutated serine/threonine kinase (ATM) in 11%. Based on mutations in the latter two genes, potential targeted therapies are available for approximately a quarter of cases (i.e., protein kinase inhibitors for three NF2 mutated tumors, and polyADP-ribose polymerase inhibitors for two ATM mutated tumors). Extensive NGS analysis of PeM samples resulted in the identification of potentially effective targeted therapies for about one in four patients. Although these therapies are currently not available for patients with PeM, ongoing developments might result in new treatment options in the future.