Proceedings of the National Academy of Sciences of the United States of America 2022 November 29 [Link]

Wenlong Liu, Chin-Hsien Tai, Xiufen Liu, Ira Pastan

Abstract

LMB-100 is a recombinant immunotoxin composed of a Fab linked to a toxin. It kills cells expressing human mesothelin (hMSLN), which is highly expressed on the surface of mesothelioma and many other cancer cells. Clinically, we observed some patients had delayed responses to an anti-hMSLN immunotoxin treatment, suggesting the induction of anti-tumor immunity. We aimed to develop a mouse model to investigate whether immunotoxin alone can induce anti-tumor immunity and to study the mechanism of this immunity. An immunocompetent transgenic mouse was used to grow mouse mesothelioma AB1 cells expressing hMSLN in the peritoneal cavity. Mice were treated with LMB-100, and mice with complete responses (CRs) were rechallenged with tumor cells to determine whether anti-tumor immunity developed. Changes in gene expression profiles were evaluated by Nanostring, and changes in cytokines and chemokines were checked by protein arrays. The distribution of various immune cells was assessed by immunohistochemistry. Our results show that the mice with tumor reached CRs and developed anti-tumor immunity after LMB-100 treatment alone. The primary response requires CD8+ T cells, CD4+ T cells, and B cells. Transcriptional profiling shows that LMB-100 treatment reshapes the tumor immune microenvironment by upregulating chemotaxis signals. LMB-100 treatment upregulates genes associated with tertiary lymphoid structures (TLS) development and induces TLS formation in tumors. In sum, immunotoxin-mediated cell death induces anti-tumor immunity and the development of TLS, which provides insights into how immunotoxins cause tumor regressions.